47 research outputs found

    Super-sample covariance approximations and partial sky coverage

    Full text link
    Super-sample covariance (SSC) is the dominant source of statistical error on large scale structure (LSS) observables for both current and future galaxy surveys. In this work, we concentrate on the SSC of cluster counts, also known as sample variance, which is particularly useful for the self-calibration of the cluster observable-mass relation; our approach can similarly be applied to other observables, such as galaxy clustering and lensing shear. We first examined the accuracy of two analytical approximations proposed in the literature for the flat sky limit, finding that they are accurate at the 15% and 30-35% level, respectively, for covariances of counts in the same redshift bin. We then developed a harmonic expansion formalism that allows for the prediction of SSC in an arbitrary survey mask geometry, such as large sky areas of current and future surveys. We show analytically and numerically that this formalism recovers the full sky and flat sky limits present in the literature. We then present an efficient numerical implementation of the formalism, which allows fast and easy runs of covariance predictions when the survey mask is modified. We applied our method to a mask that is broadly similar to the Dark Energy Survey footprint, finding a non-negligible negative cross-z covariance, i.e. redshift bins are anti-correlated. We also examined the case of data removal from holes due to, for example bright stars, quality cuts, or systematic removals, and find that this does not have noticeable effects on the structure of the SSC matrix, only rescaling its amplitude by the effective survey area. These advances enable analytical covariances of LSS observables to be computed for current and future galaxy surveys, which cover large areas of the sky where the flat sky approximation fails.Comment: 14 pages, 10 figures. Updated to match version published in Astronomy & Astrophysic

    The WaZP galaxy cluster sample of the dark energy survey year 1

    Get PDF
    We present a new (2+1)D galaxy cluster finder based on photometric redshifts called Wavelet Z Photometric (WaZP) applied to DES first year (Y1A1) data. The results are compared to clusters detected by the South Pole Telescope (SPT) survey and the redMaPPer cluster finder, the latter based on the same photometric data. WaZP searches for clusters in wavelet-based density maps of galaxies selected in photometric redshift space without any assumption on the cluster galaxy populations. The comparison to other cluster samples was performed with a matching algorithm based on angular proximity and redshift difference of the clusters. It led to the development of a new approach to match two optical cluster samples, following an iterative approach to minimize incorrect associations. The WaZP cluster finder applied to DES Y1A1 galaxy survey (1511.13 deg2 up to mi = 23 mag) led to the detection of 60 547 galaxy clusters with redshifts 0.05 <z< 0.9 and richness Ngals ≥ 5. Considering the overlapping regions and redshift ranges between the DES Y1A1 and SPT cluster surveys, all SZ based SPT clusters are recovered by the WaZP sample. The comparison between WaZP and redMaPPer cluster samples showed an excellent overall agreement for clusters with richness Ngals (λ for redMaPPer) greater than 25 (20), with 95 per cent recovery on both directions. Based on the cluster cross-match, we explore the relative fragmentation of the two cluster samples and investigate the possible signatures of unmatched clusters

    Dust Reverberation Mapping in Distant Quasars from Optical and Mid-Infrared Imaging Surveys

    Full text link
    The size of the dust torus in Active Galactic Nuclei (AGN) and their high-luminosity counterparts, quasars, can be inferred from the time delay between UV/optical accretion disk continuum variability and the response in the mid-infrared (MIR) torus emission. This dust reverberation mapping (RM) technique has been successfully applied to 70\sim 70 z0.3z\lesssim 0.3 AGN and quasars. Here we present first results of our dust RM program for distant quasars covered in the SDSS Stripe 82 region combining 20\sim 20-yr ground-based optical light curves with 10-yr MIR light curves from the WISE satellite. We measure a high-fidelity lag between W1-band (3.4 μ\mum) and gg band for 587 quasars over 0.3z20.3\lesssim z\lesssim 2 (\left\sim 0.8) and two orders of magnitude in quasar luminosity. They tightly follow (intrinsic scatter 0.17\sim 0.17 dex in lag) the IR lag-luminosity relation observed for z<0.3z<0.3 AGN, revealing a remarkable size-luminosity relation for the dust torus over more than four decades in AGN luminosity, with little dependence on additional quasar properties such as Eddington ratio and variability amplitude. This study motivates further investigations in the utility of dust RM for cosmology, and strongly endorses a compelling science case for the combined 10-yr Vera C. Rubin Observatory Legacy Survey of Space and Time (optical) and 5-yr Nancy Grace Roman Space Telescope 2μ\mum light curves in a deep survey for low-redshift AGN dust RM with much lower luminosities and shorter, measurable IR lags. The compiled optical and MIR light curves for 7,384 quasars in our parent sample are made public with this work.Comment: Accepted for publication in Ap

    Constraints on dark matter to dark radiation conversion in the late universe with DES-Y1 and external data

    Get PDF
    84siWe study a class of decaying dark matter models as a possible resolution to the observed discrepancies between early- and late-time probes of the universe. This class of models, dubbed DDM, characterizes the evolution of comoving dark matter density with two extra parameters. We investigate how DDM affects key cosmological observables such as the CMB temperature and matter power spectra. Combining 3x2pt data from Year 1 of the Dark Energy Survey,Planck-2018 CMB temperature and polarization data, Supernova (SN) Type Ia data from Pantheon, and BAO data from BOSS DR12, MGS and 6dFGS, we place new constraints on the amount of dark matter that has decayed and the rate with which it converts to dark radiation. The fraction of the decayed dark matter in units of the current amount of dark matter, zetazeta, is constrained at 68% confidence level to be <0.32 for DES-Y1 3x2pt data, <0.030 for CMB+SN+BAO data, and <0.037 for the combined dataset. The probability that the DES and CMB+SN+BAO datasets are concordant increases from 4% for the LambdaLambdaCDM model to 8% (less tension) for DDM. Moreover, tension in S8=sigma8sqrtOmegam/0.3S_8=sigma_8sqrt{Omega_m/0.3} between DES-Y1 3x2pt and CMB+SN+BAO is reduced from 2.3sigmasigma to 1.9sigmasigma. We find no reduction in the Hubble tension when the combined data is compared to distance-ladder measurements in the DDM model. The maximum-posterior goodness-of-fit statistics of DDM and LambdaLambdaCDM are comparable, indicating no preference for the DDM cosmology over LambdaLambdaCDM....partially_openopenChen, Angela; Huterer, Dragan; Lee, Sujeong; Ferté, Agnès; Weaverdyck, Noah; Alonso Alves, Otavio; Leonard, C. Danielle; MacCrann, Niall; Raveri, Marco; Porredon, Anna; Di Valentino, Eleonora; Muir, Jessica; Lemos, Pablo; Liddle, Andrew; Blazek, Jonathan; Campos, Andresa; Cawthon, Ross; Choi, Ami; Dodelson, Scott; Elvin-Poole, Jack; Gruen, Daniel; Ross, Ashley; Secco, Lucas F.; Sevilla, Ignacio; Sheldon, Erin; Troxel, Michael A.; Zuntz, Joe; Abbott, Tim; Aguena, Michel; Allam, Sahar; Annis, James; Avila, Santiago; Bertin, Emmanuel; Bhargava, Sunayana; Bridle, Sarah; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Costanzi, Matteo; Crocce, Martin; da Costa, Luiz; Elidaiana da Silva Pereira, Maria; Davis, Tamara; Doel, Peter; Eifler, Tim; Ferrero, Ismael; Fosalba, Pablo; Frieman, Josh; Garcia-Bellido, Juan; Gaztanaga, Enrique; Gerdes, David; Gruendl, Robert; Gschwend, Julia; Gutierrez, Gaston; Hinton, Samuel; Hollowood, Devon L.; Honscheid, Klaus; Hoyle, Ben; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Maia, Marcio; Marshall, Jennifer; Menanteau, Felipe; Miquel, Ramon; Morgan, Robert; Palmese, Antonella; Paz-Chinchon, Francisco; Plazas Malagón, Andrés; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Schubnell, Michael; Serrano, Santiago; Smith, Mathew; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; To, Chun-Hao; Varga, Tamas Norbert; Weller, Jochen; Wilkinson, ReeseChen, Angela; Huterer, Dragan; Lee, Sujeong; Ferté, Agnès; Weaverdyck, Noah; Alonso Alves, Otavio; Leonard, C. Danielle; Maccrann, Niall; Raveri, Marco; Porredon, Anna; Di Valentino, Eleonora; Muir, Jessica; Lemos, Pablo; Liddle, Andrew; Blazek, Jonathan; Campos, Andresa; Cawthon, Ross; Choi, Ami; Dodelson, Scott; Elvin-Poole, Jack; Gruen, Daniel; Ross, Ashley; Secco, Lucas F.; Sevilla, Ignacio; Sheldon, Erin; Troxel, Michael A.; Zuntz, Joe; Abbott, Tim; Aguena, Michel; Allam, Sahar; Annis, James; Avila, Santiago; Bertin, Emmanuel; Bhargava, Sunayana; Bridle, Sarah; Brooks, David; Carnero Rosell, Aurelio; Carrasco Kind, Matias; Carretero, Jorge; Costanzi, Matteo; Crocce, Martin; da Costa, Luiz; Elidaiana da Silva Pereira, Maria; Davis, Tamara; Doel, Peter; Eifler, Tim; Ferrero, Ismael; Fosalba, Pablo; Frieman, Josh; Garcia-Bellido, Juan; Gaztanaga, Enrique; Gerdes, David; Gruendl, Robert; Gschwend, Julia; Gutierrez, Gaston; Hinton, Samuel; Hollowood, Devon L.; Honscheid, Klaus; Hoyle, Ben; James, David; Jarvis, Mike; Kuehn, Kyler; Lahav, Ofer; Maia, Marcio; Marshall, Jennifer; Menanteau, Felipe; Miquel, Ramon; Morgan, Robert; Palmese, Antonella; Paz-Chinchon, Francisco; Plazas Malagón, Andrés; Roodman, Aaron; Sanchez, Eusebio; Scarpine, Vic; Schubnell, Michael; Serrano, Santiago; Smith, Mathew; Suchyta, Eric; Tarle, Gregory; Thomas, Daniel; Chun-Hao, To; Varga, Tamas Norbert; Weller, Jochen; Wilkinson, Rees

    OzDES reverberation mapping program: lag recovery reliability for 6-yr C IV analysis

    Get PDF
    We present the statistical methods that have been developed to analyse the OzDES reverberation mapping sample. To perform this statistical analysis we have created a suite of customizable simulations that mimic the characteristics of each source in the OzDES sample. These characteristics include: the variability in the photometric and spectroscopic light curves, the measurement uncertainties, and the observational cadence. By simulating the sources in the OzDES sample that contain the C iv emission line, we developed a set of criteria that rank the reliability of a recovered time-lag depending on the agreement between different recovery methods, the magnitude of the uncertainties, and the rate at which false positives were found in the simulations. These criteria were applied to simulated light curves and these results used to estimate the quality of the resulting Radius-Luminosity relation. We grade the results using three quality levels (gold, silver, and bronze). The input slope of the R-L relation was recovered within 1σ for each of the three quality samples, with the gold standard having the lowest dispersion with a recovered a R-L relation slope of 0.454 ± 0.016 with an input slope of 0.47. Future work will apply these methods to the entire OzDES sample of 771 AGN

    Spherically symmetrical accretion of matter: Basic concepts and cosmological applications

    No full text
    Nesta dissertação discutimos o processo da acreção de materia sobre objetos compactos em suas diferentes abordagens. Iniciando com o caso clássico, estudamos sua contraparte relativística e, por fim, investigamos a acreção de fluidos cosmológicos (energia escura e matéria escura) em buracos negros. Devido a simetria esférica adotada, a formação dos chamados discos de acréscimo é proibida (tanto no caso clássico quanto no relativístico) e, portanto, os problemas relacionados com a física dos discos (sua formação e evolução) não foram investigados. No contexto clássico, analisamos inicialmente a chamada acreçao de Bondi, onde o fluido acretado obedece a uma equação de estado politropica e o processo de acreção é descrito pela hidrodinâmica euleriana. A existância de 6 tipos possíveis de solucões para o campo de velocidades é identicada e suas consequências fsicas são discutidas em detalhe. Apenas uma dessas soluções descreve de forma fisicamente consistente o processo de acreção. A taxa de materia acretada é constante, um resultado esperado devido a hipotese de regime estacionário. O estudo do caso relativstico é completamente baseado na Teoria da Relatividade Geral, com o campo gravitacional do corpo central sendo descrito pela metrica de Schwarzschild. O processo relativstico também ocorre sob condições estacionárias e, portanto, a taxa de acreção resultante também é constante. Uma atenção especial foi dedicada para a acreção de fluidos cosmologicos satisfazendo uma equação de estado linear e tambem para o chamado gás de Chaplygin. Estudamos separadamente o comportamento espacial do fluido na região dominada pela acreção e também a influência da evolução cosmologica nas regiões mais distantes. Mostramos que a massa do buraco negro central pode apresentar uma evolução no tempo em escala cosmológica. Os resultados de Babichev (caso linear) e o gás de Chaplygin foram unicadamente descritos através de uma equacão de estado generalizada. Por fim, determinamos também sob que condições a acreção de matéria pode provocar mudancas significativas na massa do buraco negro.In this dissertation the matter accretion process upon compact objects is discussed in its diferent approaches. Starting with the classical case, the relativistic type was studied and, in the end, the accretion of cosmological fluids (dark energy and dark matter) onto a black hole is investigated. Due to spherical symmetry adopted, the formation of accretion disks is forbidden (both in the classical and relativistic case) and, thus, the problems related to disk physics (the formation and evolution) were not investigated. On the classical approach, the so called Bondi accretion is examined, in which the matter flux occurs according to a polytropic equation of state and the accretion itself is described by the Eulerian hydrodynamic. The existence of 6 possible families of solutions for the velocity field is identied and its physical consequences are thoroughly discussed. Only one of these solutions describes the accretion process in a physically consistent manner. The mass accretion rate is found to be constant, as expected duo to the steady-state hypothesis. The relativistic approach is completely based on the General Relativity Theory. In this case, the gravitational field of the central body is described by the Schwarzschild metric. The relativistic process also occurs in steady-state conditions and, therefore, the accretion flux also is constant. A particular interest is given to the accretion of cosmological fluids with a linear equation of state and of Chaplygin gas. Both the spacial behaviour of the fluids in the accretion dominated region and their cosmological evolution in farther regions are looked into individually. The mass of the central black hole\'s evolution is shown to occur in cosmological times. The Babichev (linear equation of state) and Chaplygin results were unied through a generalised equation of state. At last, it is also determined under which conditions the accretion of cosmological fluids can have astonishing effects on the black hole\'s mass

    Cosmology with Galaxy Clusters in the Dark Energy Survey

    No full text
    Aglomerados de galáxias são as maiores estruturas no Universo. Sua distribuição mapeia os halos de matéria escura formados nos potenciais profundos do campo de matéria escura. Consequentemente, a abundância de aglomerados é altamente sensível a expansão do Universo, assim como ao crescimento das perturbações de matéria escura, constituindo uma poderosa ferramenta para fins cosmológicos. Na era atual de grandes levantamentos observacionais que produzem uma quantidade gigantesca de dados, as propriedades estatísticas dos objetos observados (galáxias, aglomerados, supernovas, quasares, etc) podem ser usadas para extrair informações cosmológicas. Para isso, é necessária o estudo da formação de halos de matéria escura, da detecção dos halos e aglomerados, das ferramentas estatísticas usadas para o vínculos de parâmetros, e finalmente, dos efeitos da detecções ópticas. No contexto da formulação da predição teórica da contagem de halos, foi analisada a influência de cada parâmetro cosmológico na abundância dos halos, a importância do uso da covariância dos halos, e a eficácia da utilização dos halos para vincular cosmologia. Também foi analisado em detalhes os intervalos de redshift e o uso de conhecimento prévio dos parâmetros ({\\it priors}). A predição teórica foi testada um uma simulação de matéria escura, onde a cosmologia era conhecida e os halos de matéria escura já haviam sido detectados. Nessa análise, foi atestado que é possível obter bons vínculos cosmológicos para alguns parâmetros (Omega_m,w,sigma_8,n_s), enquanto outros parâmetros (h,Omega_b) necessitavam de conhecimento prévio de outros testes cosmológicos. Na seção dos métodos estatísticos, foram discutidos os conceitos de {\\it likelihood}, {\\it priors} e {\\it posterior distribution}. O formalismo da Matriz de Fisher, bem como sua aplicação em aglomerados de galáxias, foi apresentado e usado para a realização de predições dos vínculos em levantamentos atuais e futuros. Para a análise de dados, foram apresentados métodos de Cadeias de Markov de Monte Carlo (MCMC), que diferentemente da Matriz de Fisher não assumem Gaussianidade entre os parâmetros vinculados, porém possuem um custo computacional muito mais alto. Os efeitos observacionais também foram estudados em detalhes. Usando uma abordagem com a Matriz de Fisher, os efeitos de completeza e pureza foram extensivamente explorados. Como resultado, foi determinado em quais casos é vantajoso incluir uma modelagem adicional para que o limite mínimo de massa possa ser diminuído. Um dos principais resultados foi o fato que a inclusão dos efeitos de completeza e pureza na modelagem não degradam os vínculos de energia escura, se alguns outros efeitos já estão sendo incluídos. Também foi verificados que o uso de priors nos parâmetros não cosmológicos só afetam os vínculos de energia escura se forem melhores que 1\\%. O cluster finder(código para detecção de aglomerados) WaZp foi usado na simulação, produzindo um catálogo de aglomerados. Comparando-se esse catálogo com os halos de matéria escura da simulação, foi possível investigar e medir os efeitos observacionais. A partir dessas medidas, pôde-se incluir correções para a predição da abundância de aglomerados, que resultou em boa concordância com os aglomerados detectados. Os resultados a as ferramentas desenvolvidos ao longo desta tese podem fornecer um a estrutura para a análise de aglomerados com fins cosmológicos. Durante esse trabalho, diversos códigos foram desenvolvidos, dentre eles, estão um código eficiente para computar a predição teórica da abundância e covariância de halos de matéria escura, um código para estimar a abundância e covariância dos aglomerados de galáxias incluindo os efeitos observacionais, e um código para comparar diferentes catálogos de halos e aglomerados. Esse último foi integrado ao portal científico do Laboratório Interinstitucional de e-Astronomia (LIneA) e está sendo usado para avaliar a qualidade de catálogos de aglomerados produzidos pela colaboração do Dark Energy Survey (DES), assim como também será usado em levantamentos futuros.Abstract Galaxy clusters are the largest bound structures of the Universe. Their distribution maps the dark matter halos formed in the deep potential wells of the dark matter field. As a result, the abundance of galaxy clusters is highly sensitive to the expansion of the universe as well as the growth of dark matter perturbations, representing a powerful tool for cosmological purposes. In the current era of large scale surveys with enormous volumes of data, the statistical quantities from the objects surveyed (galaxies, clusters, supernovae, quasars, etc) can be used to extract cosmological information. The main goal of this thesis is to explore the potential use of galaxy clusters for constraining cosmology. To that end, we study the halo formation theory, the detection of halos and clusters, the statistical tools required to quarry cosmological information from detected clusters and finally the effects of optical detection. In the composition of the theoretical prediction for the halo number counts, we analyze how each cosmological parameter of interest affects the halo abundance, the importance of the use of the halo covariance, and the effectiveness of halos on cosmological constraints. The redshift range and the use of prior knowledge of parameters are also investigated in detail. The theoretical prediction is tested on a dark matter simulation, where the cosmology is known and a dark matter halo catalog is available. In the analysis of the simulation we find that it is possible to obtain good constraints for some parameters such as (Omega_m,w,sigma_8,n_s) while other parameters (h,Omega_b) require external priors from different cosmological probes. In the statistical methods, we discuss the concept of likelihood, priors and the posterior distribution. The Fisher Matrix formalism and its application on galaxy clusters is presented, and used for making forecasts of ongoing and future surveys. For the real analysis of data we introduce Monte Carlo Markov Chain (MCMC) methods, which do not assume Gaussianity of the parameters distribution, but have a much higher computational cost relative to the Fisher Matrix. The observational effects are studied in detail. Using the Fisher Matrix approach, we carefully explore the effects of completeness and purity. We find in which cases it is worth to include extra parameters in order to lower the mass threshold. An interesting finding is the fact that including completeness and purity parameters along with cosmological parameters does not degrade dark energy constraints if other observational effects are already being considered. The use of priors on nuisance parameters does not seem to affect the dark energy constraints, unless these priors are better than 1\\%.The WaZp cluster finder was run on a cosmological simulation, producing a cluster catalog. Comparing the detected galaxy clusters to the dark matter halos, the observational effects were investigated and measured. Using these measurements, we were able to include corrections for the prediction of cluster counts, resulting in a good agreement with the detected cluster abundance. The results and tools developed in this thesis can provide a framework for the analysis of galaxy clusters for cosmological purposes. Several codes were created and tested along this work, among them are an efficient code to compute theoretical predictions of halo abundance and covariance, a code to estimate the abundance and covariance of galaxy clusters including multiple observational effects and a pipeline to match and compare halo/cluster catalogs. This pipeline has been integrated to the Science Portal of the Laboratório Interinstitucional de e-Astronomia (LIneA) and is being used to automatically assess the quality of cluster catalogs produced by the Dark Energy Survey (DES) collaboration and will be used in other future surveys

    The XXL Survey L. AGN contamination in galaxy clusters: detection and cosmological impact

    No full text
    International audienceX-ray observations of galaxy clusters are impacted by the presence of active galactic nuclei (AGN) in a manner that is challenging to quantify, leading to biases in the detection and measurement of cluster properties for both astrophysics and cosmological applications. Using automated X-ray pipeline techniques, we introduce a new automated class for AGN-contaminated (AC) clusters in the XXL source detection software. The majority of these systems are otherwise missed by current X-ray cluster detection methods. The AC selection is also effective at distinguishing AGN and cool core presence using supplementary optical and infrared information. We present 33 AC objects, consisting of 25 clusters in the redshift range, 0.14z1.030.14 \leq z \leq 1.03, and 8 other sources with significantly peaked central emission based on X-ray observations. Six of these are new confirmed clusters. We compute the missed fraction of the XXL survey, defined as the fraction of genuine clusters that are undetected due to their centrally peaked X-ray profiles. We report seven undetected AC clusters above z>0.6z > 0.6, in the range where X-ray cluster detection efficiency drops significantly. The missed fraction is estimated to be at the level of 5%5\% for the 50 square degree XXL area. The impact on cosmological estimates from missed clusters is negligible for XXL, but produces a 3σ\sim 3\sigma tension with the fiducial cosmology when considering larger survey areas. This work demonstrates the first systematic attempt to quantify the percentage of missed clusters in X-ray surveys as a result of central AGN contamination. Looking towards surveys such as eROSITA and Athena, larger areas and increased sensitivity will significantly enhance cluster detection, therefore robust methods for characterising AGN contamination will be crucial for precise cluster cosmology, particularly in the redshift z>1z > 1 regime

    The XXL Survey L. AGN contamination in galaxy clusters: detection and cosmological impact

    No full text
    International audienceX-ray observations of galaxy clusters are impacted by the presence of active galactic nuclei (AGN) in a manner that is challenging to quantify, leading to biases in the detection and measurement of cluster properties for both astrophysics and cosmological applications. Using automated X-ray pipeline techniques, we introduce a new automated class for AGN-contaminated (AC) clusters in the XXL source detection software. The majority of these systems are otherwise missed by current X-ray cluster detection methods. The AC selection is also effective at distinguishing AGN and cool core presence using supplementary optical and infrared information. We present 33 AC objects, consisting of 25 clusters in the redshift range, 0.14z1.030.14 \leq z \leq 1.03, and 8 other sources with significantly peaked central emission based on X-ray observations. Six of these are new confirmed clusters. We compute the missed fraction of the XXL survey, defined as the fraction of genuine clusters that are undetected due to their centrally peaked X-ray profiles. We report seven undetected AC clusters above z>0.6z > 0.6, in the range where X-ray cluster detection efficiency drops significantly. The missed fraction is estimated to be at the level of 5%5\% for the 50 square degree XXL area. The impact on cosmological estimates from missed clusters is negligible for XXL, but produces a 3σ\sim 3\sigma tension with the fiducial cosmology when considering larger survey areas. This work demonstrates the first systematic attempt to quantify the percentage of missed clusters in X-ray surveys as a result of central AGN contamination. Looking towards surveys such as eROSITA and Athena, larger areas and increased sensitivity will significantly enhance cluster detection, therefore robust methods for characterising AGN contamination will be crucial for precise cluster cosmology, particularly in the redshift z>1z > 1 regime

    The XXL Survey L. AGN contamination in galaxy clusters: detection and cosmological impact

    No full text
    International audienceX-ray observations of galaxy clusters are impacted by the presence of active galactic nuclei (AGN) in a manner that is challenging to quantify, leading to biases in the detection and measurement of cluster properties for both astrophysics and cosmological applications. Using automated X-ray pipeline techniques, we introduce a new automated class for AGN-contaminated (AC) clusters in the XXL source detection software. The majority of these systems are otherwise missed by current X-ray cluster detection methods. The AC selection is also effective at distinguishing AGN and cool core presence using supplementary optical and infrared information. We present 33 AC objects, consisting of 25 clusters in the redshift range, 0.14z1.030.14 \leq z \leq 1.03, and 8 other sources with significantly peaked central emission based on X-ray observations. Six of these are new confirmed clusters. We compute the missed fraction of the XXL survey, defined as the fraction of genuine clusters that are undetected due to their centrally peaked X-ray profiles. We report seven undetected AC clusters above z>0.6z > 0.6, in the range where X-ray cluster detection efficiency drops significantly. The missed fraction is estimated to be at the level of 5%5\% for the 50 square degree XXL area. The impact on cosmological estimates from missed clusters is negligible for XXL, but produces a 3σ\sim 3\sigma tension with the fiducial cosmology when considering larger survey areas. This work demonstrates the first systematic attempt to quantify the percentage of missed clusters in X-ray surveys as a result of central AGN contamination. Looking towards surveys such as eROSITA and Athena, larger areas and increased sensitivity will significantly enhance cluster detection, therefore robust methods for characterising AGN contamination will be crucial for precise cluster cosmology, particularly in the redshift z>1z > 1 regime
    corecore